数学实验室
网站首页|研究所简介|所情快讯|专家讲学|研究队伍|科研项目|科研成果
文章内容页
当前位置: 网站首页>>科研成果>>正文
林寿教授1987-2014论文集
2014-12-31 14:31   审核人:

林寿教授于1987-2014年发表的论文集目录及pdf下载链接

http://linshou.ndnu.edu.cn/xslz11.htm


部分论文目录如下:

193. Lin Shou, Zhang Jinhuang. Mapping theorems on countable tightness and a question of F. Siwiec//林寿, 张金煌. 可数tightness的映射定理及F. Siwiec的一个问题, Comment. Math. Univ. Carolin. 2014, 55(4): 523–536

192. Lin Fucai, Lin Shou, Iván Sánchez. A note on pseudobounded paratopological groups//林福财, 林寿, Iván Sánchez. 伪有界仿拓扑群的注记,Topol. Algebra Appl., 2014, 2:11–18

191. Xie Li-Hong, Li Piyu, Lin Shou. Remainders in compactifications of semitopological and paratopological groups//谢利红, 李丕余, 林寿. 半拓扑群和仿拓扑群中紧化的剩余,Topology Appl., 2014, 178: 384-392

190. Li Piyu, Xie Li-Hong, Lin Shou. Submetrizability in semitopological groups//李丕余, 谢利红, 林寿. 半拓扑群的次可度量性, Topology Appl., 2014, 172: 21-27

189. Xie Li-Hong, Lin Shou. A note on the continuity of the inverse in paratopological groups//谢利红, 林寿. 仿拓扑群中逆映射连续性的注记, Studia Sci. Math. Hungar., 2014, 51 (3): 326-334

188. Lin Fucai, Lin Shou. About remainders in compactifications of paratopological groups//林福财, 林寿. 仿拓扑群的紧化的剩余, Bull. Iranian Math. Soc., 2014, 40(3): 713-719

187. Ge Xun, Lin Shou. Topologies on superspaces of TVS-cone metric spaces//葛洵, 林寿. TVS锥度量空间的超空间拓扑,Scientific World Journal, 2014 (2014), Article ID 640323, 5 pages

186. Xie Li-Hong, Lin Shou. Submetrizability in paratopological groups//谢利红, 林寿. 仿拓扑群的次可度量性, Topology Proc., 2014, 44: 139-149

185. Lin Fucai, Lin Shou. Some notes on closed sequence-covering maps//林福财, 林寿. 闭序列覆盖映射的一些注记, 数学研究及应用//J. Math. Research Appl., 2014, 34(1): 97-104

184. Lin Shou, Li Kedian, Ge Ying. Convergent-sequence spaces and sequence-covering mappings//林寿, 李克典, 葛英. 收敛序列空间与序列覆盖映射, Houston J. Math., 2013, 39(4): 1367-1384

183. Li Kedian, Lin Shou. Quasi-metrizability of bispaces by weak bases//李克典, 林寿. 基于弱基的双拓扑空间的拟可度量性,Filomat, 2013, 27(6): 949-954

182. Xie Li-Hong, Lin Shou. The Baire property in the remainders of semitopological groups//谢利红, 林寿. 半拓扑群剩余的Baire性质,Bull. Aust. Math. Soc. 2013, 88(2): 301-308

 

关闭窗口

版权所有:宁德师范学院数学研究所

闽ICP备09011837号